Goto

Collaborating Authors

 Discourse & Dialogue


Towards Robust Multimodal Sentiment Analysis with Incomplete Data School of Data Science, The Chinese University of Hong Kong, Shenzhen

Neural Information Processing Systems

The field of Multimodal Sentiment Analysis (MSA) has recently witnessed an emerging direction seeking to tackle the issue of data incompleteness. Recognizing that the language modality typically contains dense sentiment information, we consider it as the dominant modality and present an innovative Languagedominated Noise-resistant Learning Network (LNLN) to achieve robust MSA. The proposed LNLN features a dominant modality correction (DMC) module and dominant modality based multimodal learning (DMML) module, which enhances the model's robustness across various noise scenarios by ensuring the quality of dominant modality representations. Aside from the methodical design, we perform comprehensive experiments under random data missing scenarios, utilizing diverse and meaningful settings on several popular datasets (e.g., MOSI, MOSEI, and SIMS), providing additional uniformity, transparency, and fairness compared to existing evaluations in the literature. Empirically, LNLN consistently outperforms existing baselines, demonstrating superior performance across these challenging and extensive evaluation metrics.


Toward Robust Incomplete Multimodal Sentiment Analysis via Hierarchical Representation Learning 1,3

Neural Information Processing Systems

Multimodal Sentiment Analysis (MSA) is an important research area that aims to understand and recognize human sentiment through multiple modalities. The complementary information provided by multimodal fusion promotes better sentiment analysis compared to utilizing only a single modality. Nevertheless, in real-world applications, many unavoidable factors may lead to situations of uncertain modality missing, thus hindering the effectiveness of multimodal modeling and degrading the model's performance. To this end, we propose a Hierarchical Representation Learning Framework (HRLF) for the MSA task under uncertain missing modalities. Specifically, we propose a fine-grained representation factorization module that sufficiently extracts valuable sentiment information by factorizing modality into sentiment-relevant and modality-specific representations through crossmodal translation and sentiment semantic reconstruction. Moreover, a hierarchical mutual information maximization mechanism is introduced to incrementally maximize the mutual information between multi-scale representations to align and reconstruct the high-level semantics in the representations. Ultimately, we propose a hierarchical adversarial learning mechanism that further aligns and adapts the latent distribution of sentiment-relevant representations to produce robust joint multimodal representations. Comprehensive experiments on three datasets demonstrate that HRLF significantly improves MSA performance under uncertain modality missing cases.


22b1f2e0983160db6f7bb9f62f4dbb39-Paper.pdf

Neural Information Processing Systems

The fine-tuning of pre-trained language models has a great success in many NLP fields. Yet, it is strikingly vulnerable to adversarial examples, e.g., word substitution attacks using only synonyms can easily fool a BERT-based sentiment analysis model. In this paper, we demonstrate that adversarial training, the prevalent defense technique, does not directly fit a conventional fine-tuning scenario, because it suffers severely from catastrophic forgetting: failing to retain the generic and robust linguistic features that have already been captured by the pre-trained model. In this light, we propose Robust Informative Fine-Tuning (RIFT), a novel adversarial fine-tuning method from an information-theoretical perspective. In particular, RIFT encourages an objective model to retain the features learned from the pre-trained model throughout the entire fine-tuning process, whereas a conventional one only uses the pre-trained weights for initialization. Experimental results show that RIFT consistently outperforms the state-of-the-arts on two popular NLP tasks: sentiment analysis and natural language inference, under different attacks across various pre-trained language models.





A Reduction for Efficient LDA Topic Reconstruction

Neural Information Processing Systems

We present a novel approach for LDA (Latent Dirichlet Allocation) topic reconstruction. The main technical idea is to show that the distribution over the documents generated by LDA can be transformed into a distribution for a much simpler generative model in which documents are generated from the same set of topics but have a much simpler structure: documents are single topic and topics are chosen uniformly at random. Furthermore, this reduction is approximation preserving, in the sense that approximate distributions -- the only ones we can hope to compute in practice -- are mapped into approximate distribution in the simplified world. This opens up the possibility of efficiently reconstructing LDA topics in a roundabout way. Compute an approximate document distribution from the given corpus, transform it into an approximate distribution for the single-topic world, and run a reconstruction algorithm in the uniform, single-topic world -- a much simpler task than direct LDA reconstruction. We show the viability of the approach by giving very simple algorithms for a generalization of two notable cases that have been studied in the literature, p-separability and matrix-like topics.




Distilled Wasserstein Learning for Word Embedding and Topic Modeling

Neural Information Processing Systems

We propose a novel Wasserstein method with a distillation mechanism, yielding joint learning of word embeddings and topics. The proposed method is based on the fact that the Euclidean distance between word embeddings may be employed as the underlying distance in the Wasserstein topic model. The word distributions of topics, their optimal transports to the word distributions of documents, and the embeddings of words are learned in a unified framework. When learning the topic model, we leverage a distilled underlying distance matrix to update the topic distributions and smoothly calculate the corresponding optimal transports. Such a strategy provides the updating of word embeddings with robust guidance, improving the algorithmic convergence. As an application, we focus on patient admission records, in which the proposed method embeds the codes of diseases and procedures and learns the topics of admissions, obtaining superior performance on clinically-meaningful disease network construction, mortality prediction as a function of admission codes, and procedure recommendation.